H=-16t^2+160t+64

Simple and best practice solution for H=-16t^2+160t+64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2+160t+64 equation:



=-16H^2+160H+64
We move all terms to the left:
-(-16H^2+160H+64)=0
We get rid of parentheses
16H^2-160H-64=0
a = 16; b = -160; c = -64;
Δ = b2-4ac
Δ = -1602-4·16·(-64)
Δ = 29696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{29696}=\sqrt{1024*29}=\sqrt{1024}*\sqrt{29}=32\sqrt{29}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-32\sqrt{29}}{2*16}=\frac{160-32\sqrt{29}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+32\sqrt{29}}{2*16}=\frac{160+32\sqrt{29}}{32} $

See similar equations:

| 37-x/4=8 | | 3x^2+66x+384=600 | | -3d=-90 | | 3+2c=9-10c | | 2(12-x)-4×=6 | | -2x2+4x=0 | | 5-8=2x+7 | | (x-3)=6x=7 | | -6(4x-6)+1=-24x+37 | | -10=-5y-65 | | 10t=12 | | 2x+16+40=7x-4 | | 6+2(3j-2)=4(j+1) | | 3k+17=8 | | 18w=8 | | x^2-5x+6=3x^2+4x | | -2j–8=-j | | 11x-6+70=21x+4 | | x^2-5x+6=3x | | 0=4x^​3+21x^2+21x+4 | | 11b^2-22=6b | | -6(4x-6)+1=-24×+37 | | 11p^2-30p+19=0 | | 7x-5+8x-6=139 | | 5r-8=7 | | 2x^2+14=−84 | | 9x+1=1x-23 | | (2x-30)+(3x-54)+(4x-72)=48 | | 1/3x+8=21 | | -2x(7x+15)=18+2x | | 6+3y=21 | | 7.2f=f |

Equations solver categories